Dihedral Coverings of Trigonal Curves
نویسندگان
چکیده
We classify and study trigonal curves in Hirzebruch surfaces admitting dihedral Galois coverings. As a consequence, we obtain certain restrictions on the fundamental group of a plane curve D with a singular point of multiplicity (deg D−3).
منابع مشابه
Prym Varieties and Fourfold Covers
Contents 1. Introduction 2 2. Prym varieties for covers of curves 3 3. Galois covers 8 4. Degree two covers 10 5. Covers of degree three 13 6. Covers of degree four 15 6.1. The cyclic case 15 6.2. The Klein case 17 7. The dihedral case 22 7.1. The bigonal construction 34 8. The alternating case 37 8.1. The trigonal construction for the case A 4 43 9. The symmetric case 44 9.1. The classical cas...
متن کاملElliptic curves with weak coverings over cubic extensions of finite fields with odd characteristics
In this paper, we present a classification of classes of elliptic curves defined over cubic extension of finite fields with odd characteristics, which have coverings over the finite fields therefore can be attacked by the GHS attack. We then show the density of these weak curves with hyperelliptic and non-hyperelliptic coverings respectively. In particular, we shown for elliptic curves defined ...
متن کاملElliptic curves with weak coverings over cubic extensions of finite fields with odd characteristic
In this paper, we present a classification of elliptic curves defined over a cubic extension of a finite field with odd characteristic which have coverings over the finite field therefore subjected to the GHS attack. The densities of these weak curves, with hyperelliptic and non-hyperelliptic coverings, are then analyzed respectively. In particular, we show, for elliptic curves defined by Legen...
متن کاملOn the Varieties Parametrizing Trigonal Curves with Assigned Weierstrass Points
We study the varieties that parametrize trigonal curves with assigned Weierstrass points; we prove that they are irreducible and compute their dimensions. To do so, we stratify the moduli space of all trigonal curves with given Maroni invariant.
متن کاملCYCLIC COVERINGS OF THE p-ADIC PROJECTIVE LINE BY MUMFORD CURVES
Exact bounds for the positions of the branch points for cyclic coverings of the p-adic projective line by Mumford curves are calculated in two ways. Firstly, by using Fumiharu Kato’s ∗-trees, and secondly by giving explicit matrix representations of the Schottky groups corresponding to the Mumford curves above the projective line through combinatorial group theory.
متن کامل